Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Yan Xu, ${ }^{\text {a }}$ Shao-Hua Ding, ${ }^{\text {a }}$ Guang-Peng Zhou ${ }^{\text {a }}$ and Yu-Guo Liu ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and ${ }^{\mathbf{b}}$ Chemical Analysis Center, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail: yanxu@Innu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.010 \AA$
$R$ factor $=0.027$
$w R$ factor $=0.061$
Data-to-parameter ratio $=8.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Samarium(III) formate

The title compound, poly[samarium(III)-tri- $\mu$-formato], $\left[\mathrm{Sm}\left(\mathrm{HCO}_{2}\right)_{3}\right]_{n}$, is isostructural with numerous lanthanide formates and comprises a three-dimensional framework assembled from $\mathrm{SmO}_{9}$ polyhedra and $\mathrm{HCO}_{2}^{-}$anions. The Sm atom lies on a site of 3 m symmetry and is coordinated by nine O atoms in a typical coordination geometry. The formate anions lie on mirror planes.

## Comment

The title compound, (I), is isostructural with numerous lanthanide formates, including those of $\mathrm{La}, \mathrm{Ce}, \mathrm{Tb}, \mathrm{Tm}$ (Bolotovsky et al., 1990) and Gd (Kistaiah et al., 1981), as well as that of the actinide $U$ (Chadha et al., 1980). Unit-cell data have been reported previously for $\mathrm{Sm}\left(\mathrm{HCO}_{2}\right)_{3}$ (Mayer et al., 1962), although the compound was described in that case as a fractional hydrate and atomic coordinates were not determined.

(I)

As shown in Fig. 1, the Sm atom lies on a site of $3 m$ symmetry and is coordinated by nine O atoms from the $\mathrm{HCO}_{2}^{-}$ anions, which lie on mirror planes. The Sm environment has typical geometrical parameters (Table 1). The $\mathrm{C}-\mathrm{O}$ distances within the anions are 1.235 (16) and 1.259 (16) $\AA$ and the $\mathrm{O}-$ $\mathrm{C}-\mathrm{O}$ angle is $125.8(13)^{\circ}$. Each C atom makes three $\mathrm{C}-\mathrm{O}-$ Sm linkages through one $\mu_{1}$-bound O atom (O1) and one $\mu_{2}$ bridging O atom ( O 2 ). Three Sm atoms and three $\mathrm{HCO}_{2}^{-}$ anions are connected, forming six-membered rings, which are connected by further $\mathrm{HCO}_{2}^{-}$anions, generating a threedimensional framework (Fig. 2). The distance between adjacent Sm atoms is 4.006 (3) A.

## Experimental

Colourless needle-like crystals of the title compound were synthesized hydrothermally from a mixture of $\mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{HCO}_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$, tetramethylammonium hydroxide (TMAOH) and dimethylformamide. In a typical synthesis, $\mathrm{Sm}_{2} \mathrm{O}_{3}(0.15 \mathrm{~g})$ was dissolved in a mixed solvent of dimethyl formamide ( 1.08 g ) and water ( 10.0 g ), followed by addition of $\mathrm{HCO}_{2} \mathrm{H}(0.57 \mathrm{~g})$ and $10 \%$ TMAOH $(1.08 \mathrm{~g})$ with constant stirring. The mixture was kept in a 25 ml Teflon-lined steel autoclave at 453 K for 10 d . The autoclave was slowly cooled to room temperature, and the product was then filtered, washed with distilled water, and dried at room temperature. Although the final product did not contain TMAOH, this was needed for preparation of the title compound.

## Crystal data

$\left[\mathrm{Sm}\left(\mathrm{HCO}_{2}\right)_{3}\right]$
$M_{r}=285.40$
Trigonal, $R 3 \mathrm{~m}$
$a=10.503(3) \AA$
$c=4.006(3) \AA$
$V=382.7(3) \AA^{3}$
$Z=3$

## Data collection

Bruker APEXII CCD
$\quad$ diffractometer
$\omega$ scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 2003
$\quad T_{\min }=0.546, T_{\max }=0.657$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.061$
$S=1.10$
201 reflections
25 parameters
All H -atom parameters refined
$D_{x}=3.715 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=11.47 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless $0.06 \times 0.04 \times 0.04 \mathrm{~mm}$

825 measured reflections 201 independent reflections 201 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=29.0^{\circ}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Sm} 1-\mathrm{O} 1$ | $2.409(10)$ | $\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{ii}}$ | $2.529(9)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{i}}$ | $2.543(9)$ |  |  |
| $\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{O} 1^{\mathrm{iii}}$ | $119.93(2)$ | $\mathrm{O}^{\mathrm{vi}}-\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{ii}}$ | $64.4(3)$ |
| $\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{i}}$ | $126.2(3)$ | $\mathrm{O}^{\mathrm{iv}}-\mathrm{Sm} 1-\mathrm{O}^{\mathrm{v}}$ | $144.27(13)$ |
| $\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{iv}}$ | $129.4(3)$ | $\mathrm{O}^{\mathrm{ii}}-\mathrm{Sm} 1-\mathrm{O}^{\mathrm{v}}$ | $104.3(3)$ |
| $\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{v}}$ | $71.0(2)$ | $\mathrm{O}^{\mathrm{v}}-\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{vii}}$ | $64.0(3)$ |
| $\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{O} 2^{\mathrm{ii}}$ | $73.3(2)$ |  |  |

Symmetry codes: (i) $x-\frac{1}{3}, y+\frac{1}{3}, z-\frac{2}{3}$; (ii) $-y+\frac{2}{3}, x-y-\frac{2}{3}, z+\frac{1}{3}$; (iii) $-y+1, x-y, z$; (iv) $x-\frac{1}{3}, y+\frac{1}{3}, z+\frac{1}{3}$; (v) $-y+\frac{2}{3}, x-y-\frac{2}{3}, z-\frac{2}{3}$; (vi) $-x+y+\frac{5}{3},-x+\frac{4}{3}, z+\frac{1}{3}$; (vii) $-x+y+\frac{5}{3},-x+\frac{4}{3}, z-\frac{2}{3}$.

The maximum and minimum peaks in the difference density are located at 0.95 and $0.87 \AA$, respectively, from Sm 1 . The H atom was located in a difference Fourier map, and refined with an isotropic displacement parameter, with the $\mathrm{C} 1-\mathrm{H} 1$ and $\mathrm{O} 1 / \mathrm{O} 2 \cdots \mathrm{H} 1$ distances restrained to be 0.96 (2) and 1.88 (2) Å, respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Education Office Foundation of Liaoning Province (05L220).

## References

Bolotovsky, R. L., Bulkin, A. P., Krutov, G. A., Kudryashev, V. A., Trunov, V. A., Ul’yanov, V. A., Anston, O., Hiismäki, P., Pöyry, H., Tiitta, A., Loshmanov, A. A. \& Furmanova, N. G. (1990). Solid State Commun. 76, 1045-1049.
Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.


Figure 1
The coordination geometry of Sm 1 , showing displacement ellipsoids drawn at the $70 \%$ probability level. H atoms are shown as spheres of arbitrary radius. [Symmetry codes: (i) $-y+1, x-y, z$; (ii) $-x+y+1$, $-x+1, z$; (iii) $x-\frac{1}{3}, y+\frac{1}{3}, z-\frac{2}{3}$; (iv) $x-\frac{1}{3}, y+\frac{1}{3}, z+\frac{1}{3}$; (v) $-y+\frac{2}{3}, x-y-\frac{2}{3}$, $z-\frac{2}{3}$; (vi) $-y+\frac{2}{3}, x-y-\frac{2}{3}, z+\frac{1}{3} ;($ vii $)-x+y+\frac{5}{3},-x+\frac{4}{3}, z-\frac{2}{3} ;($ viii $)$ $\left.-x+y+\frac{5}{3},-x+\frac{4}{3}, z+\frac{1}{3}.\right]$


## Figure 2

View along the $c$ axis, showing the three-dimensional framework with sixmembered rings.

Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
Chadha, A., Sampath, S. \& Chackraburtty, D. M. (1980). Inorg. Chim. Acta, 42, 163-167.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kistaiah, P., Murthy, K. S., Iyengar, L. \& Rao, K. V. K. (1981). J. Mater. Sci. 16, 2321-2323.
Mayer, I., Steinberg, M., Feigenblatt, F. \& Glasner, A. (1962). J. Phys. Chem. 66, 1737-1738.
Sheldrick, G. M. (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.


[^0]:    © 2006 International Union of Crystallography All rights reserved

